A New Generation of Integrated Poles for 5G Small cell Infrastructure – Capabilities and Requirements

5G mmWave network deployment will depend largely on small cell street poles to meet coverage requirements in urban areas. Next-generation integrated poles combine and conceal all the 5G/4G electronics, power and connectivity electronics needed to create a small cell site. Through scalable manufacturing, testing and fast turnaround times, these poles can reduce time-to-deployment, simplify installation and make it easier to upgrade.

The leading role of integrated small cell poles in 5G infrastructure

To make 5G wireless services a reality, small cell sites using mmWave radios will be widely installed to provide sufficient coverage. Their higher frequencies exhibit increased propagation loss that limits inter-site distances (ISD) to roughly a tenth of a mile, so 5G small cell sites must be lower to the ground and in closer proximity to one another than previous wireless generations. In dense, high-volume urban areas, 5G small cell sites will be prevalent all over busy city streets, plazas and neighborhoods, co-existing with lighting poles and other street furniture. To avoid cluttering up these urban areas, carriers, tower companies and municipalities are recognizing that the street lighting poles are obvious platforms for 5G small cell sites.

A new generation of 5G small cell poles needs to be highly integrated to meet the sometimes-conflicting requirements for quickly standing up wireless service while minimizing disruption on the citizens and businesses the network serves. These “integrated poles” have to maximize the needs of the service providers and the municipalities, providing:

- Optimal location and orientation of 5G radios
- Integration of power control, metering and protection
- Quick connection to high-bandwidth fiber backhaul connections
- Protection of the electronics, and a way for power to be easily disconnected
- Easy upgradeability as 5G spectrums and technologies evolve
- Support for standard and LED street lighting
- Upcoming smart city functionality such as sensors and EV charging

Most importantly, integrated small cell poles will become a common element in the urban landscape. They need to fit in seamlessly with the rest of the architecture, public spaces and pedestrian right of ways. Because each city has its own history, challenges, ordinances and aspirations, integrated poles will need to be easily adapted to different designs, yet be based on a standard product for streamlined customization and manufacturing.
Components of next-gen integrated small cell poles with concealment

Next-generation integrated small cell poles combine and conceal all the elements needed for a complete 5G small cell site to support a carrier’s deployment priorities: optimal performance, fast time to market and upgradeability. They include:

- AC- or DC-powered 5G mmWave and 4G radios
- AC/DC rectifiers or remote powering units
- Fiber connectivity enclosures
- RF combiners/diplexers
- Alarm systems and intrusion sensors
- Forced-cooled ventilation systems
- AC and DC power distribution panels with utility smart energy metering
- Electrical protection

The pole can be defined in several segments—pole top, mid pole, base and foundation—each with specific functions.

Pole toppers for radio/antenna assemblies

Integrated small cell poles mount the 4G/5G antennas and/or radios in pole toppers to optimize performance and concealment options. The overriding characteristic should be flexibility in configuration, so the radios can be positioned optimally (and eventually upgraded) depending on the needs of that particular site. The pole manufacturer must be able to provide a concealment material that does not interfere with the 5G mmWave signals (see below).

To meet required coverage patterns, multi-tenant siting and future upgrades, the pole topper should have a uniform form factor that can host different brands of 5G radios, as well as be backwards compatible to lower frequency bands. With unique mounting options, the form factor can support different orientations of the radios, radios on different levels, on top of one another or back-to-back.

Mid-pole sections incorporate electronics and attachments

Most of the electronics in an integrated small cell pole are located in the mid-pole section. Exacting design, engineering, manufacturing and testing are important to be sure this section can support all the requirements put upon it. In addition, it must be easily customized to support different equipment configurations.

Inside, the mid-pole section holds power management and connectivity equipment. It integrates a robust overvoltage surge protection to protect sophisticated small cell radio systems. It will also include fiber enclosures that support flexibility and optimal fiber organization.

The manufacturer must be able to do precise positioning to maximize the density of electronics. For example, a railing
Raycap next generation small cell poles are fully integrated, UL listed and shipping today, at scale.

Optional Pre-fab Foundation

Raycap can provide customers with traditional poured-in-place foundation designs, as well as alternative pre-fabricated foundation options to help expedite deployment.
True 5G small cell concealment

With one or more small cell sites on every street, municipalities are rightly concerned about the aesthetic implications. Fortunately, there are now materials that can cover 5G radios with very little or no impact on performance. Raycap has developed a unique patent-pending 5G mmWave concealment material that meets the needs of 5G bandwidth and gigabit speeds, while minimizing dB loss.

Raycap’s exclusive InvisiWave solution for pole mounts is approved for use at mmWave frequencies, after extensive research and testing at the 24GHz, 28GHz and 39GHz bands—even as high as 100GHz. It is also fully backwards compatible with all commonly used sub-6GHz frequencies, so radios from different generations can be combined in the same enclosure. We’ve confirmed this performance by conducting measurements in an RF anechoic chamber using network and spectrum analyzers, specifically measuring losses over the 700MHz-52GHz range. We have conducted specialized measurements to evaluate absorption when concealment surface is wet, and we did proximity testing and several beamforming pattern measurements. Raycap has also developed an RF model to simulate RF losses and pattern distortion phenomena in any mmWave frequency band.

The InvisiWave material works today in pole toppers, surrounds and radomes on integrated pole configurations, as well as in panel products like chimneys, cupolas, screen walls, and other rooftop concealments. It is fabricated from RF-friendly material with a smooth, hydrophobic surface and durability to stand up to environmental extremes.

Integration, manufacturing and installation considerations

Integrated small cell poles answer another challenge to 5G site infrastructure: rapid time to deployment. They are engineered as a standard product line that can be quickly customized for a particular need, manufactured at scale and delivered with no surprises.

Integration speeds deployment

Integrated small cell poles are manufactured, assembled and tested at the factory under controlled conditions. They arrive at a customer’s site with cabling, radios, and power and fiber equipment ready to go. All that is needed for installation is to affix the pole on the foundation, then hook up the feed lines for power and fiber. This is much faster than hiring field crews to install electrical components and run cabling on site.

Integrated small cell poles need to incorporate 120/240 VAC industry-standard load centers and surge-protection devices that are suitable for use as service equipment (SUSE) with NO conditions per UL and NEC. For example, Raycap integrated poles employ patented Strikesorb® 30-A-2CHV modules capable of withstanding direct surge currents up to 5kA (10/350 μs) and induced surge currents up to 60 kA (8/20 μs). These products provide dual (Line 1 to Neutral) (Line 2 to Neutral) protection for up to sixteen AC circuits.

Manufacturing ability ensures delivery and quality

According to the CTIA trade group, small cell sites will skyrocket from 86,000 in 2018 to over 800,000 by 2026. High quality, scalable manufacturing will be critical to meeting this demand.

Raycap, for example, has design and manufacturing facilities with the capacity to produce more than 1,000 poles per month. This includes a brand new steel facility with in-house cutting, drilling, sawing, forming, welding, powder coating, integration and cabling. Raycap is not dependent on other vendors for the customization and scalability needed to meet a range of deployment projects.

Quality inspection and testing are fundamentally important to complex solutions like integrated poles. Performing all measurements in a controlled environment minimizes complications during field installation and minimizes commissioning and activation time. The testing group should bring experience in the field of environmental testing according to UL, NEBS, GR, ISO, EN, MIL and ASTM standards.
Integrated poles are part of complete 5G infrastructure

Every municipality and utility will have its own approach to solving its 5G deployment tradeoffs. While integrated small cell poles are the backbone for 5G wireless networks, other configurations of small cell nodes—partially concealed and non-concealed—can suit specific site requirements. It’s straightforward to mount and conceal 5G small cell sites on buildings, monuments, signs and other elements of the urban cityscape. This range of solutions makes it easier for network operators to specify the right combination of small cell sites for any deployment.

Side mounted: Whether due to lack of space, permit restrictions or the cost of power and fiber connections, active equipment (concealed antennas and connectivity enclosures) can be installed on or at the side of an existing light pole or other utility asset.

Wall-mounted: Wall side-mounted box concealments complement existing construction, and hand-crafted faux brick, block, stucco, and stone textures seamlessly blend with buildings.

Rooftop: Ballasted (non-penetrating) concealment pods disguise rooftop antennas using a steel frame, center mast pipe, steel clamp-on bulkheads and a radome. These standard frames allow for reduced engineering cost and lead time plus the optimized framing material makes manufacturing and installation a breeze.
About Raycap

Raycap is a solutions provider and manufacturer of telecommunications infrastructure products for mobile and broadband networks with operations throughout Europe and North America. In June 2018, Raycap acquired STEALTH® Concealment Solutions, the pioneer in concealment solutions for RF antenna equipment. Raycap has a large installed base in the United States and Europe, including connectivity and lightning protection solutions for telecommunications infrastructure and RF concealments. As a known and trusted vendor for Tier-1, Tier-2 & Tier-3 carriers, Raycap products can be found in a wide variety of telecom sites with more than 400,000 site installations across North America alone.

Raycap has the small cell experience, technology and the reputation for delivering the right product on-time for smooth installation.

Sources:
Confidential interviews with executives at carriers, tower companies, A&E firms, utilities and municipalities.
Lighting Protection in Next-Generational Small Cell Infrastructure (AGL Magazine, June 2019).
Developing Aesthetic and Reliable Wireless Concealments (Enterprise Network Magazine, 2019).

Talk to Raycap about integrated small cell poles and all 5G concealment options.
Contact us today at info@raycap.com